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ABSTRACT 

A Generalized Teaching Machine Decision Structure with 

Application to Speed Reading 

A relatively new type of automated instruction called the "computer - 
directed" teaching machine is discussed.     Typical present-day teaching 
machines either give every student the same instruction material or choose 
what material the student receives on the basis of his answer to the last 
question.     The computer-directed machine chooses instruction material by 
making a statistical evaluation of the  student's total behavior in comparison 
with other students' total behaviors  .     This machine's  statistics are actually 
changed as new students take the  course.    Such a teaching machine can per- 
form very much like a human tutor who adjusts his presentation to fit the 
individual student's capabilities and who improves his teaching technique with 
each student. 

The  role of the computer-directed machine in the teaching machine 
field can only be determined after: 

1. A technique for comparing teaching machines is developed. 

2. More research is performed utilizing the computer-directed machine. 

In this paper a technique is  suggested for comparing teaching machines.     The 
machine's tutorial functions would be fitted to a very general model of the tu- 
torial teaching cycle.     This allows the various automated instruction devices 
to be discussed in terms of a common model.    An application of the computer- 
directed machine was made to a speed reading course.     Preliminary experiments 
with this course indicate that the computer-directed machine can perform like 
a human tutor. 

The topic of speed reading lends itself to many possible future experi- 
ments. Since most student's know something about speed reading prior to the 
course, the student's speed reading skill before and after the course could be 
measured and improvements could be noted. Many non-automated courses for 
speed reading exist, and the student's improvements with automated and non- 
automated instruction could be  compared. 

KEY WORDS 

Teaching machine Computer Automatic instruction Speed reading 
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CHAPTER I 

THE TEACHING PROCESS 

Comparing Instruction Techniques 

While research projects on automated instruction are being 

conducted in many parts of the country,   very few attempts have been 

made to compare the various experiments,    (c.f.   Skinner,     No large- 

scale evaluation of machine teaching has yet been attempted.     We have 

so far been concerned mainly with the practical problems in the design 

and use of machines and with testing and revising simple programs   , 

pg.   159,   ref.   17.)    This is largely attributed to the lack of a standard 

notation or measuring stick by which instruction techniques can be 

compared.     If automated instruction devices are ever to become market 

able,   there must be a way to evaluate them both in terms of other auto- 

mated devices and conventional instruction techniques.    A comparison 

method would be useful which would answer questions like these: 

1. How does this instruction technique accomplish the process 

of teaching ? 

2. How is the student paced through the course? 

3. How does the structure of the course change after students 

complete their study? 

To facilitate this useful comparison,   a model for the teaching 

process  is  proposed.     Individual teaching techniques could be fitted to 

this model,   and a standard notation would permit techniques to be com- 

pared on the basis of how they fit the model.    Such a model would be 
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general enough to cover all variations of the teaching process.     Fundamental 

to the presentation of a model for teaching is an understanding of the me- 

chanics of teaching itself. 

Teaching 

The goal of teaching is the student's mastery of a topic's prin- 

ciples or skills.    A course generally presents the topic principles in the 

from of sub-topics;    thus,   the topic is taught in small increments (most 
17 

researchers,   including Skinner     ,   in the field of automated instruction 

agree that optimum learning Occurs when the course is composed of a 

large number of steps with very few sub-topics in each step.     This 
5 

opinion is  supported by such experimenters as Coulson and Silberman   ), 

A course may be pictured as a series of ascending levels each level 

representing a status position in the course indicating that the student 

who reaches this point has mastered all of the sub-topics marked by 

the previous levels.     When a student reaches the uppermost or final 

level of the course,   he has mastered the whole topic. 

Final level of course level L 

level 3 

level 2 

level 1 

Macro View of a Course 

Figure  1-1 



Teaching is complicated by the fact that learning is so dependent 

on the individual.    A course presentation that might work very well for one 

student could be terrible for another.    In terms of the macro or over-all 

view of a course,  the teacher's changes in his presentation are revealed 

by the different paths for each student between levels of the course.    The 

path for a bright student might exhibit skipping over several levels at a 

time while the path for a relatively dull student might show a tedious level 

by level ascent. 

level 5 

level 4 
DULL 

level 3     STUDENT'S 
PATH 

level 2     • • 

level 1 

BRIGHT 
STUDENT'S 
PATH 
• • 

< , f  

i 
^__      L. 

1 
1 

A 

i 
i 
A -A 

 ^ 

i 
i 

, *  

Possible Paths, for a Bright and Dull Student 

Figure 1 -2 

The teacher decides how to modify his presentation on the basis of the 

individual student's learning behavior. 

Tutoring is basically a feedback controlled system     .    The 

teacher presents material to the input (the student's sensory receptors) 

attempting to obtain desired responses at the output (the student's test 

behavior).    The responses are analyzed by the teacher who adapts his 

presentation to get the proper response. 
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Tutorial Instruction A Feedback Controlled System 

Figure  1-3 

One of the tutor's most important functions,   then,   is the modi- 

fication of his presentation.    He performs this function by choosing from 

his repertoire an appropriate method of instruction.     That is,   the instructor, 

faced with the problem of teaching the course's remaining sub-topics and 

having several alternative presentations in his repertoire,   chooses the 

presentation most suited to his student.    He makes this choice periodi- 

cally throughout the course because the optimum presentation may change 

as the student progresses to new material. 

The Teaching Cycle 

If a teacher-student environment is observed for some time, 

a very definite cyclic behavior is noted.     The rhythm of teaching,   testing, 

and modifying the teaching (based on test results) is plainly apparent. 

At first the teacher has some a priori plan of presentation of the material. 

Perhaps this plan is based on previous experience with other students, 

or it is designed to cover certain material in allotted amounts of time. 

The teacher will begin the instruction following this plan.    After a while 



he will test the student and evaluate the effectiveness of the present plan. 

The plan is modified to fit the student's needs,   and the whole cycle 

repeats. 

1. The teacher chooses the presentation that is best-suited 

to the student at a given level. 

2. The teacher presents this block of instruction. 

3. The student is tested on the material covered by this 

block of instruction. 

4. The student is placed at a new level in the course. 

The Teaching Cycle (condensed) 

Figure  1 -4 

The teaching cycle can be observed in the macro or overall 

course model 

Macro Model Showing!.Teaching Cycle' 

Figure  1-5 

level i+ 1 

level i 

level 2 

level 
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Each of the methods of instruction available to the teacher at a given level, 

i ,   is labeled block   b(i, j)  .    The subscript   j   denotes the particular block 

or instruction method.    Note that at each level,     i ,   the teacher must 

choose a particular block of instruction   b(i, j)    appropriate for this  stu- 

dent.     This is called the tutorial decision making process.    After the 

teacher preserts a block of instruction,   he tests the  student.     The  student 

is now placed at a new level in the course because the teacher has re- 

evaluated the student's mastery of the topic.    This is called the tutorial 

placement function.    At this new level,   the teacher must  again make a 

decision about a new   b(i, j)  ,   and the process cycles. 

The placement function has been drawn as a quantized function. 

That is,   only a finite number of dotted lines are shown placing each stu- 

dent from level to level via a block of instruction and associated test,   yet 

there are innumerable test behaviors which the student could exhibit. 

However,   there are some very good reasons for quantizing the placement 

function.    The two most significant reasons are: 

V,   Techniques for measuring learning are,   at best,   reliable only 

as discrete measures,   not continuous measures,   of a student's 

actual learning,     (e.g.   placement for all those students with 

grade    A    behavior might be the same.    Similarly placement 

for students with grade     B   ,      C   , . . .   behavior. ) 

2.   If a course has a finite number of levels,   then the number of 

different placements must be finite. 
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CHAPTER II 

A MODEL FOR THE TEACHING CYCLE 

In order to get a more detailed look at the teaching cycle,   the 

macro model of the whole course will be replaced by a micro model of 

the cycle itself.     This micro model has the structure of a tree segment. 

When a course offers several alternative paths from start to finish,   it 

is described as exhibiting branching.    Therefore,   a tree is a useful 

topology for the teaching cycle because it shows the branching nature 

of a course very adequately. 

The levels    (i's)    of the course are now represented by the 

level nodes of the tree (the dark circles see Figure 2-1).     The dark 

branches represent the various blocks of presentation available at each 

level.    The test period is represented by the test nodes (the light circles) 

The student's test results place him (via the light branches) at a new 

level node. 

The representation of the entire course,   by drawing the 

whole tree with interconnecting micro models,   would indeed be more 

cumbersome than the anlogous representation by the macro model. 

However,   the representation of the teaching cycle alone may now be 

considered in minute detail. 

The micro model is drawn to show the n      teaching cycle 

in the course (i.e.   the next cycle after n-1  previous cycles have been 

executed).     Thus    i      is the present status level of the student,   and the 

teacher must choose an instruction block or branch from the available 

values of   j      (the tutorial decision making process).    The student is 

tested after terminating the branch,   j     .    His test behavior will lie in 

one of the    k      discrete ranges and will place him at a new level    i n B r n+1 

(the tutorial placement function). 

-7- 
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CHAPTER III 

FITTING CURRENT EXPERIMENTS TO THE MICRO MODEL 

Straight Line or Linear Teaching 

By far the most common method of teaching used today is the 

lecture method which employs straight line or linear teaching.     That is, 

there is simply no branching;    the students follow a pre-selected path 

through the course.     This method of teaching fits the model by reducing 

it to a trivial form.    One can think of each level's having only one branch 

(i   )    and each test behavior    (k  )   leading to the same placement    (i       ). Jn n 6 r n+1 
Also one can suppose,   since relatively few tests are given during the 

course (they are no longer needed to guide the teacher in his path deter- 

mination merely to grade the student),   that the individual blocks of 

instruction,    b(i   , j  ) ,   become longer and the total number of teaching 
n    n ° 

cycles in the course becomes reduced (the step-size increases). 

Intrinsic Programming 

Crowder defines a method of course design called intrinsic 
8 

programming   .     The choice of the proper alternative instruction block 

is built into the instruction material itself;     so that,   the material may 

be self-taught.    An example of an intrinsically programmed device is 

the so-called programmed text which is well represented by the Crowder 
8 

Scrambled Book   .     With these texts,   the choice of the next page to be 

read is determined by the student's answers to questions on the present 

page;    the choice is independent of the answers to previous questions. 

-10- 



Of course,   on each page there is only one mode or block of instruction 

available.     This description applies to a number of auto-instructional 
19 

devices currently on the market (such as Auto-Tutor     ). 

This type of instruction fits the model very well.    Leaving 

each level   (i   )    there is still but one branch   (j   )  ,   but now the test 
n n 

behavior ranges    (k  )    are definitely used to place the student at the 
n 

next level   (i   ,.)   or page. 
n+ 1 

n+2 

n+Z 

n+1 Vn+2 
Model for a Programmed Text 

Figure 3-1 

Extrinsic Programming 

9 
Crowder defines extrinsically programmed courses    as 

those where the choice of alternative instruction blocks (branching) 

is performed by an external element such as a teacher or a computer, 

and the basis for this choice involves the student's cumulative test 

behavior.    A typical computer-based teaching machine is a facility 

•11- 



called "CLASS ' developed by the Systems Development Corporation of 

Santa Monica,   California     .    Many of the courses taught at     CLASS 

may be described by the following structure: 

Courses are split into sub-topics A,   B,   C,   D,   . . . 

Available at each level are several alternative instruction modes.     The 

alternatives are organized such that alternative I covers topic A in 

just a brief manner,  alternative II goes into more detail,   alternative III 

goes into still more detail,   etc 

A B C D 

1-r 

II 

III 

IV 

Organization of a Computer-Based Course * 

Figure  3-2 

A student might be initiated from topic A on alternative I. 

If he does not perform well,   he may be routed through alternative II. 

Suppose he is also routed through alternative III before he masters 

topic A.    Now the computer decides that this student is not as bright 

as at first anticipated,   and he perhaps needs a more detailed coverage 

of future topics.     Therefore for topic B,   he might be initiated on al- 

ternative II.     Suppose he drops again to alternative III.     Next the 

computer would initiate him on topic C alternative III,   etc. 

•12- 



In applying this type of automated instruction to the model,   the 

level placements based on the student's test behavior are similar to the 

intrinsic Crowder type,   but the choice of the instruction alternative is 

decidely extrinsic.    With this type of teaching machine,   the full scope 

of the teaching cycle model is represented. 

Skinner Disc Device 

17, 19 
The Skinner Disc Device is a very difficult one to fit 

to the micro model of the teaching cycle.     The Skinner Disc or Tape 

presents material to the student in an order identical to the physical 

sequence on the disc or tape.     With each frame of material there is a 

question.     When the student answers the question correctly,   the frame 

is dropped out of the course material.     The disc or tape is rerun until 

all frames are dropped out,   and theoretically, all of the material is 

learned. 

This fits the model if one is willing to accept the idea of 

disappearing branches.    Possibly this can be represented if one 

considers each re-show of the tape or disc as a new part of the 

course and not just a re-traverse of the course. 

Of course no model can be expected to represent adequately 

all of the specific cases which it generalizes.    The Skinner Disc Device 

is a very unusual teaching method,   and most present day teaching 

methods are more like the previously described teaching techniques. 

However the model represents a large percentage of present-day 

teaching situations. 
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CHAPTER IV 

COMPUTER-DIRECTED TEACHING MACHINES 

The decision functions performed by most present-day computer- 

based teaching machines are intuitive and somewhat arbitrary judgements. 

With most of these machines the behavior of each student is forgotten as 
1 8 

the next student is encountered.    Smallwood       envisioned a teaching envi- 

ronment as a probabilistic system a system in which decisions are 

based on statistical comparisons of the present student's behavior with 

previous  student's behaviors.    Such a teaching system would continuously 

revise its statistics about past students as new students took the course. 

Smallwood constructed a computer simulation of this teaching system. 

We call this type of teaching machine the    computer-directed    teaching 

machine. 

The author of this  paper is  presenting another computer- 

directed teaching machine  utilizing a probabilistic decision structure. 

Now the notation has been established,   and a modified decision struc- 

ture which can apply to many courses has been developed.     The computer- 

directed decision mechanism will be presented in this  section. 

The tutorial processes which tailor the course to an individual 

are two-fold: 

1. The decision making process which chooses an instruction 

block from a number of alternatives. 

2. The placement function which re-evaluates the student's 

mastery of the topic by placing him at an appropriate level 

in the course. 
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Computer-directed machines are distinguished from computer-based 

machines by the different realizations of the tutorial processes. 

Computer-Directed Realization of the Placement Function 

Placement is the process of assigning a student to a new 

level after re-evaluating his mastery of the topic.    Therefore placement 

is a function of the student's old level    (i   )  ,   the instruction branch    (j   ) 
n n 

which the student was given at the old level,   and the range    (k  )    into 
n 

which the student's branch test behavior fell      With this computer- 

directed teaching machine the placement function is pre-determined 

by the structure of the course.     For example,   if the student were 

initiated on a branch which covered several sub-topics and if he did 

very well on the branch test,   he would probably be skipped ahead a 

couple of levels      Whereas,   if the student were on a branch cover.ng 

only a few sub-topics and if he did well,   he would probably just be 

advanced to the next level. 

Expressing this placement function mathematically, 

i   .,   - V(i   ,j   ,k  ) (4. 1) 
n+1 n    n     n 

This function remains constant as the course is taught to successive 

students. 

Ideally it might be desirable to change the placement function 

as well as the course structure by some course monitor that observes 

the reactions of students to the present structure.    Such a course monitor 

or automatic course programmer,   while beyond the scope of this project, 

is worthy of consideration 
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Computer-Directed Realization of the Decision Process 

The decision process chooses the instruction block best-suited 

to the student from the entire repertoire of alternate instruction blocks 

available at the present level*    Differences between decision processes 

result from different interpretations of the words    best-suited   . 

In this research the words    best-suited    were interpreted to 

mean the choice of that instruction block that will maximize the expected 

value of a parameter indicative of the student's mastery of the topic. 

This is a reasonable interpretation because the goal of a course is to 

enable the student to master the topic. 

Let this parameter be called   U   which represents the 

student's learning or mastery of the course material.    Also let   h 
n 

represent the student's cumulative past history (test behavior) gene- 
f"Vi 

rated before the n      teaching cycle.    Then it is desired to find that 

branch   (j   )   leaving the present level   (i   )    which maximizes the 
n n 

expected value of   U    given   h 

Max    U :     .    (h   )    is desired. 
J i    J        n 
n n  n 

The notation    Max   means that    i      for which the function 

U .    .    (h  )    is a maximum. 
i   J        n n   n 

This value may be expressed formally from the expected 

value theorem      as: 

Max   U. (h   ) = Max       (        uf (U|h   )dU (4.2) 
J !    J        n j J lj n 
n n  n Jn TT n n over  U 
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In order to evaluate this expression it is necessary to express 

the conditional probability density function    f. (U  h  )    in terms of 
1   j n 
n Jn 

statistics which are easily derived from students' path and test behaviors, 

Consider that the cumulative history at the beginning of the next cycle, 

h     ,   ,   is a function,   W ,   of the old cumulative history,   h    ,   and the test 
n+1 n 

behavior range for this cycle,   k    .     With the present teaching machine 

structure the cumulative history is simply a uniformly weighted average 

of all of the student's test behaviors. 

nh    + U(k  ) 
n n 

h 
n+1 n +   1 

(4.3) 
where    U (kn)    is the value of the parameter    U   before 
it is fitted to range   kn.    (i.e.   the actual history generated 
by the student during the present cycle.) 

While it may be argued that a great deal of information is lost about the 
i 

student's behavior during each cycle by uniformly averaging his behaviors, 

it is important to simplify the representation of the  student's history to 

a single parameter (such as cumulative or averaged histories) because 

of the large number of calculations involved in choosing the appropriate 

instruction block.     Now we consider all possible ranges the student's 

test behavior might fit for the block   b(i   , j   )  .     The function   f     .    (U h   ) 
n    n l    1 n 

n   n 
(abbreviated   f  )    can be expressed as the sum of the probability of each test 

n ' 
behavior range times the function   f. . (U  h     ,)    (abbreviated   f     ,) 

I   , . j   , , n+1 n+1 
n+1Jn+1 

for all possible ranges. 

f. (U|h) = >P. (k   |h   ) f. (U|h  x,J (4.4) 
i   J n       (_j     I   j        n     n     I j 'n+1* 
n   n , n   n n+1   n+1 

k 

where    i = V(i   , j   , k  ) 
n+1 n    n    n 

h   , . * W(h   , k  ) 
n+1 n     n 
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It is possible to evaluate    P.    .    (k     h  ) (the probability of each 
ijnn 
n   n 

test behavior range conditioned upon a given past history) easily in terms 
21 

of student path and test behaviors^    From Bayes Theorem      the probability 

of a particular behavior range given a certain past history is equal to the 

conditional probability density function for this past history (given the 

student's test behavior fitted the specified range),   times the probability 

that the student's behavior will lie in this range,   divided by the probability 

that the student had this past history. 

g.        (h   |k )   p.        (k  ) &i    j n'    n;      1    J n 

P. (k|h)*-^ !Lii  (4.5) 
Vn     n     n 

numerator 

k 
n 

The probability,     p. (k  )    (abbreviated   p  )  ,   is estimated by that 
InJn 

fraction of the number of students reaching level   i      and emerging 

on branch   j      whose test behavior falls in range    k    .   The conditional 
n n 

density function   g.    .    (h   |k  )    is estimated by observing the past histories 
XnJn 

of those  students who reach level   i     ,   emerge on branch    j     ,   and whose 
n n 

test behavior lies in range    k    .    A density function (for the present ma- 

chine Beta functions are used see Appendices C and D) is fitted to 
7   18 18 

these observations .   (^Note that Smallwood's       decision structure 

determines    P.    .   (k     h  )    in terms of an intuitive probability model 
linn 
nJn 

which,   while reducing calculation time,   is not as mathematically 

justifiable as the  Bayes Theorem expansion and subsequent estimation.) 

The expression of   f      in terms of   f     ,    can be extended 
n n+1 

successively to    f     _, . . .     until the last level,     i„    ,   (the end of the 
n+Z — i 

course hence i »L», see page 2). 
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i) = >P.   ,(k|h))P. (k      |h  ,,)...f    (U|hj 
n       l_j    1   j      n'n^      1       j n+l'n+1 1 t 

, n  n . n+1  n+1 X 
f.    .   (U|h_) =   > P;    s(kJhJ)   P; 

VJn k k x, 
n+1 14.6) 

Thus the mean value of   U   for a student at the 1        level can be maximized 
n 

by picking that   j      for which 

\   P.    .(kjh)MaxYp (k        |h       )... fuf    (U|hJdU 
L     i   J       n     n   j     . ^     x        J n+1     n+1 J        i I 
, n  n n+1 , n+1   n+1 _, JJ 
k k   , , over U , .   _, 

n n+1 4. 7) 

is a maximum 

At the final level of the course there is only one instruction 

block after which the final test is given.     Therefore    Max   ^s meaningless 

since there is only one   j     which is therefore the maximum.     The only 

quantity in the maximization expression which remains to be discussed 

is the integral: 

y Uf.    (u|h.)dU (4.8) 
l JL 
I 

over U 

This integral may be approximated by the sum: 

U(k)P     (kje|h) 

k i 

i (4.9) 

where    U (k )    is the average value of    U in the k   range. 

It is now obvious that   P.   (k.  h.)    can be estimated in the same manner 
i.     £     I i 

that    P (k   |h  )    is estimated. 
I   j       n     n 
n  n 
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Notice that in order to determine    Max (f  )  ,   one must know 
Jn        n 

$***•  (f     ,) ,   but to determine ¥ax (f     ,) ,   one must know   Max(f       ), . . Jn+1      n+1 Jn+1     n+1 Jn+2    n+2 

It becomes apparent that one must know   Max (f       )   before determining 

Max (f      )   ancj so on.     This suggests a dynamic programming technique 
h-z 
for computing   •M-ax (f  )  .     First an initial path from level   i      (starting 

with the first possible    j   ) to the end of the course is  routed.     Working 

backwards from the test level,   Max (f„   ,)  ,   ¥ax(fA  ,),..., 
Max (f     ,) 

  h-l     ^ h-1    l'2 Jn+1     n+1 

are found,   and the expected value of the parameter    U   for this first 

value of   j     , is determined.     This process is repeated for all possible 

j     ,   and the   j      giving the maximum value for the parameter    U   is 

chosen. 

Tree structures of a course become extremely complicated, 

and,   by nature of the branching,   get increasingly complicated with 

each cycle beyond the present level node.    In fact the tree can become 

infinite.    Increasing complication means increasing computation time. 

In order to reduce computation time,   it is desirable to truncate the 

exhaustive search evaluation of   U.    .(h)    before reaching the test 
i    1 n ° 
nJn 

level.     That is,   suppose the search is truncated after nmax future 

teaching cycles are spanned.     This can be done if one is willing to 

estimate   h.   in terms of   h .If one uses this approximation, 
£ n+nmax 

it is not necessary to determine the   P     ,   where    m > n+nmax,   because 
m 

the sum of these    P     's     over all paths leading from node    m   to the 
m 

end of the course is simply equal to unity.    (All paths emerging from 

node   m   eventually lead to the end of the course.)    This truncation 

strategy leads to a modified decision formula: 
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let   M = n+nmax 

Max  u (h) = Max\p (k   |h  )...Ma^   P. (k Ih    ) f  Uf.   (U |h\ ) dU 
n n  n n    , n  n "^M , MM TT   SL 

k k,, over U 
n M 

where   h     is the estimate of   h (4. 10) 

The method used for estimating   h     by this machine was to 

consider: 

££  = function (hM> iL    - iM) (4. 11) 

The average change in history per single level advance is measured  

call it   A h 
ave 

Then 
n   = h  , + Ah       (i„   M\ (4. 12) 

£        M ave    I M' 

Smallwood's machine and the present machine utilize the 

truncation strategy in the decision technique.    However,   Smallwood's 

machine was limited to a fixed,   3-step future search while the present 

machine is capable of an arbitrary number of step future search (inclu- 

ding an exhaustive search to the end of the course see Appendix B). 
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CHAPTER V 

PROGRAMMING A COURSE 

FOR THE COMPUTER-DIRECTED MACHINE 

•r. ,        • 2,14,19 Programming or planning a course for the computer- 

directed teaching machine involves several systematic operations: 

1. The course must be divided into sub-topics and consequently 

into levels. 

2. At each level a number of different instruction blocks for 

presenting the new sub-topics must be constructed.    Some of the blocks 

should present several sub-topics (with the goal of multi-level skips for 

fast students) while other blocks should present just a few sub-topics 

(with the goal of bringing the student to the next sequential level).     While 

some of the blocks should give a concise presentation of the material, 

others  should supplement the material with examples. 

3. The course designer must tabulate a placement function 

V(i,j,k)    which reflects his opinions about where a student should be 

placed given his present placement level    (i)  ,   present block of instruc- 

tion   (j)  ,   and present test behavior   (k)  . 

4. A table of a priori estimates for the    p. . (k)    and   g. . (h |k) 

functions must be constructed. 

5. While multiple parameters are generally good indications 

of the student's achievement in the course,   these parameters must 

be expressed in terms of a common parameter    U .     That is,   though 
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there may be many parameters that indicate the student's mastery of the 

topic,   the decision structure is set up to choose the optimum presentation 

by maximizing the expected value of the single parameter    U  ,     For most 

topics the multiple parameters can be expressed in terms of a single 

parameter,   but this is not true for all topics. 

Suppose the student's achievement in the course is related to 

the measurement of two parameters ul    and    u2 .     While it is d^:;irable 

that the measures of   ul    and    u2    be individually large,   a relatively small 

measure of   ul    could be tolerated in association with a relatively large 

measure of   u2 ,   and vice versa,     This idea is illustrated by the tradeoff 

curve below 

2 min. 
U = 0 

1 min. 
Utility Tradeoff 

Figure 5-1 

Any point on the same U indifference contour (also called equal-utility 

contours) is considered to represent the same degree of mastery of the 

topic, 

6.   The course  should be presented to many test students who 

are routed through pre-determined paths in the course.     These paths 

are determined so that statistics can be gathered about every block of 

instruction at each level.    These statistics are then used to update the 

priors of operation 4 (on the previous page). 
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CHAPTER VI 

SPEED READING 

Speed Reading as a Topic for a Computer-Directed Machine 

The topic chosen for this teaching machine is  speed reading. 

Speed reading was chosen because: 

1. One of the most difficult tasks for a teaching machine is the 

measurement of the  student's learning.    However the reading rate,   which 

is certainly an indication of a student's mastery of speed reading,   is 

easily measured. 

2. Most teaching machines teach a topic new to the student. 

Everyone taking the speed reading course must, as a prerequisite, 

know how to read;    so,   a speed reading course attempts to improve 

a skill that the student already possesses.     The student's speed reading 

skill could therefore be evaluated before and after the course,   and the 

student's improvement would be easily determined. 

3. The input-output devices available for this project are 

particularly suited to speed reading (see Section VII and Appendix A). 

Teaching Speed Reading 

Reading is of vital significance to modern man who must 

be well-informed of the fast-moving stream of events in this modern 

world.    Reading helps to keep him informed.    However,   the bulk of 

material he must read is ever increasing,   and man must increase his 

reading speed to meet the new demand.    His comprehension of the 

material he reads must not suffer from his increased speed. 

.2k- 



Speed reading courses focus,   then,   on two objectives: 

1. An attempt to increase the reading speed by increasing the 

efficiency of eye movements and introducing phrase reading techniques. 

2. The formation of good reading habits directed towards 

increased reading comprehension. 

Increasing the Reading Speed 

Physiologists and psychologists have determined that 

readers do not scan lines of text smoothly as they read   .    Indeed the 

human eye cannot perceive detail while it is in motion.     Instead readers 

scan text with a repeated pattern of sweeps and fixations.    It is during 

the fixation time,   which is about  10 times longer than the sweep time   , 

that the words are actually read.    Rapid readers keep the number of 

fixations per line to a minimum (about 3 or 4 fixations in a  12 word 
4 

line   ). 

In order to reduce the number of fixations,   one must view 

more material during each fixation.     Efficient readers do not read letter- 
4 

by-letter but read by phrases or groups of words.     Cole     describes the 

progression of a student to phrase reading as a four-stage process: 

1. Beginning readers learn to read at first by word spellings  

an alphabetical or letter-by-letter approach. 

2. Later students read phonetically (which is often a difficult 

task with the English language). 

3. When the readers become familiar with a set of words, 

they use the look-and-say approach recognizing whole words as they 

read. 
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4.   The good reader ultimately recognizes whole phrases (or 

groups of 3 or 4 words) in context. 

Several methods are used to train students for phrase reading. 

4 Cole     suggests the use of texts where the material is organized into phrase 

groupings which are spaced apart. 

e.g. 

In the meadow the brown cows graze frequently 

Students would therefore be forced to read groups of words.     The spaces 

are gradually decreased on successive pages of the text.    As the student 

is conditioned to phrase reading,   the original stimulus is vanished and 

is replaced by the student's own ideas about phrase groupings. 

Another technique  utilizing a tachistoscope gives  students 

practice with phrase reading.    The tachistoscope is a device which pre- 

sents material for a b rief amount of time (l/lO to 1/200 second typically). 
3 It was developed during World War II to train pilots    to recognize military 

objectives in a single glance.    Students are first shown material for long 

time periods (1/10 second) then the amount of material increases while 

the time period decreases (1/200 second).    The tachistoscope forces 

the student to increase the amount of material he can read in a single 

glance. 

The type of material flashed by the tachistoscope is closely 

related to the  student's accuracy and limiting speed of observation.     Gray 
20     ,, 

states      ,      Tachistoscopic  studies  show words whose meanings are fami- 

liar are recognized far more rapidly and accurately than nonsense  syllables 

(and numbers)   .     Therefore a student who performs well on tachistoscopic 

exercises containing nonsense syllables or numbers must be considered 

more advanced than the student who performs well with sense words and 

phrases. 
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Improving Reading Comprehension 

Good reading comprehension is a skill based upon good reading 
1,20 

habits.    The good reader : 

1. Concentrates on what he is reading by choosing his study area 

carefully to minimize distractions. 

2. Always improves his vocabulary by looking up words which 

are new to him. 

3. Is able to identify the author's purpose or viewpoint. 

4. Is able to note detail and to discriminate. 

5. Can concisely and accurately summarize an article. 

Habits,   good or bad,   take considerable time to develop.    Good 

reading habits,   being no exception to the rule,   take years to develop and 

must always be maintained.    One can make important strides towards im- 

proving his reading habits by always being conscious of good reading 

techniques. 

Speed reading courses generally start students off on the road 

to developing good reading habits by making the student aware of good read- 

ing techniques.     The student is taught to recognize the author's sign- 

post the titles,   sub-titles,   and topic sentences the author uses to 

summarize his own material.    Students are taught to discriminate 

significant from insignificant detail. 

A typical method for presenting a comprehension improve- 

ment course involves the student's reading quantities of text then answering 

questions about the text that evaluate his reading habits. 

Often the text includes hints about reading efficiently,   but the 

text material is usually varied;   so that,   the student will develop good 

reading habits for all types of material. 
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Of the two parameters,   good comprehension is generally 

considered to be of higher value than rapid reading rate.    The reader 

who sacrifices all understanding to reading large volumes of material 

accomplishes little or nothing at all.     Good speed reading courses re- 

peatedly emphasize the importance of thorough comprehension. 
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CHAPTER VII 

APPLICATION OF THE COMPUTER-DIRECTED TEACHING MACHINE 

TO A SPEED READING COURSE 

Programming the Speed Reading Course 

The speed reading course programmed for the computer-directed 

teaching machine  is divided into two parts part one  utilizes a unique 

tachistoscope (see Appendix A) to train the student for phrase reading. 

Part two presents ideas about good reading habits directed toward improv- 

ing comprehension and increasing reading speed. 

The course was designed in the manner described by Chapter V. 

First each part of the course was divided into sub-topices or skills and 

the levels were assigned.     In the tachistoscopic training portion of the 

course there are really no sub-topics since a single skill is being developed-- 

phrase reading.    Here the increasing levels were assigned to increasing 

flash rates (decreasing flash duration time) of the tachistoscopic material. 

The tachistoscope portion was divided into five separate levels.    Level 1 

corresponds to a flash duration of 1/10 second while level 5 corresponds 

to a flash duration of 1/100  second with material approximately ten times 

more complex than that in level 1. 

At each of the levels of the course it was necessary to make 

available several alternate instruction blocks.    The tachistoscope alter- 

natives were sense material,   nonsense material,   and mixed sense-nonsense 

material in order of increasing difficulty.     For the sake of organization,   this 

same order was used in the assignment of the instruction block numbers (j's). 
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That is   j = l or 2 corresponds to sense material,   j = 3   or 4 to nonsense 

material,   and   j = 5    or 6 to mixed sense-nonsense material. 

Since the mixed sense-nonsense syllables are part one's 

most difficult tachistoscopic material,   one would expect the placement 

function to exhibit longer level skips for excellent test behavior with the 

higher valued j's than for similar test behavior in the lower valued j's. 

Indeed the construction of the placement function for the speed reading 

course was based on just this type of reasoning. 

The tachistoscopic phrase material was taken from the 
3 

Phraseoscope     slides of the Encyclopaedia Brittanica's Better Reading 

Program.     This material progresses from simple one word flashes (at 

the lowest levels) to 8 or 9 word phrases and 9 digit number flashes 

(at the highest levels). 

level 1 

level 2 

level 3 

level 4 

level 5 Y- 

increasing J_ 

increasing difficulty of material at same flash rate 

9i 

OH. 

sub-topics. 

and rapidly. 

The Course Structure of Part One 

Figure 7-1 

The second part of the course was easily divided into five 

Level 6 concerns the importance of reading accurately 
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Level 7 discusses the sweep-fixation nature of eye motion 

during reading and suggests reducing the number of fixations to a minimum. 

Level 8 concerns the art of skimming a text by looking for 

the author's sign posts. 

Level 9 is about concentrating while one reads. 

Level 10 discusses the art of comprehending material,   dis- 

criminating important from unimportant details,  and finding the main 

ideas in an article. 

The material for part two was taken from    Reading Skills 
3 

distributed by the Encyclopedia Brittanica's Better Reading Program 

and from    Reading Critically        .    Ideas are presented about good reading 

habits in large blocks of text;    then the student is asked questions about 

the text. 

Again it was essential to offer several alternate blocks of 

instruction at each level.    Here the low numbered blocks (low value of   j) 

contain large quantities of very simple text about good reading habits 

with many questions about the text.    The high numbered blocks (high 

value of   j) generally contain less material than the low numbered 

blocks.     This material consists of short summaries of the ideas  pre- 

sented in the low numbered blocks,   examples of text on which the 

student can practice the techniques suggested in the summary,   and 

fewer but more difficult questions about both the  summary and example 

texts. 

Notice that the organization of part two is consistent with 

the organization of part one.     The part two alternatives become increas- 

ingly more difficult (not only are the questions harder,   but the student 

is expected to learn the same sub-topic with less instruction),  as the 
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instruction block number increases. 

increasin 
level 6 

level 7 

level 8 

level 9 

level 10 

increasingly difficult presentations of same sub-topic 

2'     S- 

g    J 

o 

The Course Structure of Part Two 

Figure  7-2 

The placement function again exhibits longer level skips 

for students' with excellent text behaviors who were instructed by the 

higher numbered blocks than for those who were instructed by the lower 

numbered blocks. 

The next step of the programming calls for the estimation 

of the priors for the pertinent probability functions.    Since little was 

known about the reactions of students to this completely new course, 

the author ch®a£    uniform priors probability functions which predict 

all paths through the course are equally likely to produce optimum 

learning. 

The Physical Teaching Machine 

The actual speed reading course was coded for the dual 

PDP-1  (Digital Equipment Corporation's Programmed Data Processor 

1) computer system at the Air Force Cambridge Research Laboratory 

of L. G.   Hanscom Field.     The tutorial functions were performed by 

one computer (computer A) while the input-output devices,   which 

presented the actual course,   were controlled by another computer 
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(computer B).     The primary reason for using two computers was that 

the decision calculations took so much time that it was decided to per- 

form these calculations on    one machine while the student was taking 

the course presented by the other machine (see Appendix B). 

All course instructions,   text material,   and questions 

were presented page by page on the text display scope (see Appendix A). 

The student would read this material and then proceed to the next page 

or next part of the course by activating the page turning switch.    Ques- 

tions presented on this scope were answered on the computer typewriter. 

The student's response to a question was always reinforced by comments 

on the text display indicating if the student was right or wrong.     If he was 

wrong,   the correct answer was indicated. 

The tachistoscopic material was presented on the tachistos- 

cope display (see Appendix A).     This material was flashed every time 

the student pressed the flash button.     The student was expected to 

typewrite the syllables or numbers he observed.    Again the student's 

response was reinforced.    If the student was correct,   he would proceed 

to new material.     If he was incorrect,   he had the option of trying again 

(reflashing and retyping) or giving up (by engaging the give-up switch). 

The  student who gave up was given some partial credit for his last 

typewritten response.     The maximum possible score for the student 

who tried again was reduced in proportion to the number of times 

he attempted to read the same material. 

Interpreting the Student's Test Behavior 

According to Article 5 of Chapter V it is necessary to 

express all of the parameters indicative of the student's learning in 

terms of a single parameter    U   in order to meet the present decision 
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structure's requirements.    In a speed reading course there are two para- 

meters that are pertinent to the student's speed reading skills his reading 

rate and his comprehension test scores. 

1,3,4,20 , 
Most speed reading authorities agree that the reader s 

comprehension is far more important than his reading speed.     Therefore 

comprehension was weighted heavily in expressing the two parameters, 

reading speed and comprehension,   in terms of a single,   aggregate para- 

meter    U .     The simple function chosen to combine the two parameters 

in this experiment was: 

v = czs 
(7.1) 

where    C    is the comprehension test score 
S    is the reading rate in words per minute 

This function has three desirable characteristics: 

1 .   Comprehension is weighted more heavily than    reading speed. 

2. Because of the concave nature of the isoquants of   U ,   when 

the value of one parameter is small while the other is large,   the increase 

in    U   is much more for a given increase in the small valued parameter 

than for the same increase in the large valued parameter.     Therefore 

readers who either comprehend very well but read slowly or read 

rapidly but comprehend very little are given much more credit for 

improving their deficient skill than their proficient skill.     This philo- 

sophy discourages    one-sided    readers. 

3. The parameter    U   is easily calculated with this function. 
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Comprehension 
Score 

Reading Speed 

Graph of the U Function Used in This Study 

Figure 7-3 
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CHAPTER VIII 

RESULTS,   CONCLUSIONS,   PRACTICAL CONSIDERATIONS 

Many experiments can be performed with the speed reading teaching 

machine.     In this project an investigation of the comparison between students 

who were taught speed reading linearly versus computer-directed was per- 

formed.     Some of the other types of experiments that could be performed 

with the  speed reading automated course are suggested in the next section. 

A student receiving the linear version of the course would be 

routed through every possible instruction block   b(i, j)    at each level   i  . 

The student would require about five hours to complete the course for this 

path.    Average students who receive the computer-directed course would 

be routed through only about  1/3 of the course material and would require 

no more than two and a half hours to complete the course.    Experiments 

are currently being performed to determine whether both  students become 

equally skillful in their speed reading techniques. 

At the present time seven students have taken the speed reading 

course.     They have all been given linear versions of the course.    Each 

student has been routed through a new path in order to accumulate data 

about as many instruction blocks as possible.     This data is currently 

being used to update the course statistics.    Table 8-1  shows the path 

and test behavior for a typical experiment student.     The maximum value 

of the parameter    U   has been normalized to 1.0 in all of the following 

tables. 
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LEVEL (i) BLOCK (j) 

1 1 
3 2 
5 3 
6 1 
7 1 
8 1 
8 2 
9 1 

10 1 
11 (the final test) 1 

BEHAVIOR (U) 

.78 

. 71 

.86 

.57 

.40 

.62 

. 73 

.83 
1.00 

.99 

Typical Path and Behavior for Experimental Student 

Figure 8-1 

After considering table (8-2),   the manner in which the computer- 

directed teaching machine modifies its presentation to suit the individual 

is revealed.     The table shows the computer decision for the appropriate 

instruction block   (b(i, j) )   at each level   (i) ,   the student's test behavior 

(k) for this block,   and the student's placement level based on the previous 

levle (i),   the instruction block   (b(i, j) )  ,   and the test behavior (k).     The 

paths for three hypothetical students with different speed reading abilities 

are shown.    (The current actual course statistics were used for these 

hypothetical students.)    Note that for an excellent student,   the student 

would be progressed rapidly through the course (he would make several 

multi-level skips),   and the student would be given the more difficult 

instruction blocks,    b(i,j)'s (remember that the higher values of   j 

correspond to the more difficult instruction blocks according to 

Chapter VII).     The slow student would be progressed very slowly 

through the course. 
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Present Level (i)     Chosen Block (j)     Behavior (k)*     New Level (V(i,j,k) ) 

1 1 
2 3 
4 5 
6 3 
8 3 

10 3 
11 1 

1 1 
2 3 
3 3 
4 4 
5 3 
5 3 
5 3 
6 3 
7 3 
8 3 
9 3 

10 3 
11 1 

1 1 
1 3 
2 3 
3 3 
3 3 
4 4 
4 4 
4 4 
5 3 
5 3 
5 4 
6 2 
6 2 
7 2 
8 2 
9 2 
9 2 

10 2 
11 1 

*U (k)    is tabulated in this column see equation (4. 3) 

Tutorial Functions Demonstrated for Hypothetical Students 

Table 8-2 
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1 .00 2 

1 .00 4 
1 .00 6 
1 .00 8 Excellent 
1 .00 10 St ude nt 
1 .00 1 1 
1 .00 end 

. 50 2 

. 50 3 

.50 4 

. 50 5 

.50 5 

.50 5 

.93 6 Average 

.50 7 Student 

. 50 8 

.50 9 

. 50 10 

. 50 11 

.50 end 

.22 1 

. 28 I 

. 22 3 

. 13 3 

.50 4 

. 14 4 
0 .0 4 

.50 5 

. 15 5 Slow 

.50 5 Student 

.50 6 

. 35 6 

.64 7 

.49 8 

. 36 9 

.49 9 

. 71 10 

. 71 1 1 

.69 end 



He would stay at the same level to receive various presentations of the same 

material until he mastered this material.    The slow student would be pre- 

sented the simple instruction blocks,   b(i,j)'s.    (Again the lower values of 

j correspond to the simpler instruction blocks per Chapter VII. )    This 

type of tutorial behavior is just what we anticipated the computer-directed 

machine would exhibit. 

Most of the students thought the course was worthwhile.    They 

increased their reading speed an average of 100 words per minute (from 

350 to 450 average).     While the questions were entirely of the multiple 

choice variety (for ease in computer grading),   several students commented 

on the generality of the questions.    Questions were included asking the 

student to: pick the best summary of a passage;   infer conclusions from 

the material;   recall significant data,   etc. 

The course is readily changed to reflect new ideas or to correct 

errors.     The course material is all stored on a single magnetic tape 

which is considerably easier to update than the conventional micro-films 

associated with teaching machines, 

The scope which was used as the tachistoscope was not ideal. 

Many of the students complained about the legibility of the characters 

on the scope.     Unfortunately the tri-color scope used is  inherently * 

inaccurate (see Appendix A).    A better tachistoscope would consist 

of a laboratory oscilloscope with a very low persistence phosphor which 

was slaved to the Itek flicker free logic (see Appendix A).    A simple 

gating network would be used to specify the high persistence or the 

low persistence scope. 

The text scope proved to be a decidedly attractive output 

device for teaching machines.    Large quantities of text were displayed 

entirely free from the flicker normally associated with computer displays. 
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However,   the single drawback of this  scope was its requirement of large 

quantities of computer storage to control every motion of the electron 

beam.    The ideal teaching machine output scope would have its own 

memory as part of a self-contained unit. 

In Appendix B the large amount of time necessary to make a 

decision is discussed.    Much of this time is spent in making computer 

floating-point number calculations.    Floating-point arithmetic was 

necessary because of the large range of numbers involved.    The PDP-1 

computer used in this experiment does not have an internal floating- 

point system.     Instead floating-point operations are performed by sub- 

routines.     This causes a floating-point operation on the PDP-1 to take 

about 2000 times longer than such an operation on a machine like the 

IBM 7094.     The computer used for a decision structure such as the 

one described by this paper should certainly have a built-in floating- 

point system. 
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CHAPTER IX 

SUGGESTED FUTURE RESEARCH 

Many future experiments may be performed with the present 

teaching machine configuration.    Since speed reading is a skill which 

we all possess to some degree,   a pre-test might be given to place the 

students at an initial level in the course (instead of starting all students 

off at level  1 block 1 as was done in this experiment).     This pre-test 

could also be used to determine accurately the student's improvement 

after taking the course. 

The value of having a decision structure which is capable of 

a variable nmax step future search can only be determined after ex- 

periments are performed to find the relationship between the decision 

and the value of nmax.    A preliminary study of this relationship was 

made during this research.     The decisions were made for various 

values of nmax at several levels of the course for the same value of 

student past history.    In all cases the block   b(i, j)    chosen was the 

same for all values of nmax tried (see Figure 9-1).    However,   more 

experiments will have to be performed to determine this relationship 

with other student statistics.     (In the case described,   the statistics 

were tabulated by the author and were relatively symmetrical between 

levels. ) 

Perhaps an analysis should be made considering the value of 

a large nmax future  search versus the cost of a large nmax search. 

Presumably the value would go up with nmax but the cost would go 

up with increasing computer time used for making the decision 

(which goes up faster than the factorial of nmax).    Some tradeoff 
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would then be made of value for cost.    Indeed the machine's knowledge of 

the student might even influence the value of the degree of future search. 

This value might be less for a new student,   about whom the machine has 

little data,   than for a student who is well into the course.     This suggests 

a dynamic criterion for determining nmax based on how far the student 

is in the course,   how accurate the machines past decisions have been, 

the cost of an nmax search,   etc. 

Student's Leve 
Past History 

1.0 

1.0 

.50 

.50 

.25 

.25 

1.0 2 

1.0 2 

1.0 2 

.50 2 

.50 2 

.25 2 

.25 2 

Chosen Block (j) nmax 

1 

2 

1 

2 

1 

2 

3 1 

3 2 

3 3 

1 1 

1 2 

1 1 

1 2 

Computer-Directed Decisions 
versus nmax 

Figure 9-1 
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Often when students were replaced to the same level,   they were 

presented the same block of instruction material (see Table 8-2).     This 

suggests a useful modification to the decision structure which would include 

a consideration of the number of times the student has been presented each 

block of instruction material.    A choice might first be made between those 

blocks never presented to the student.    If the student has received all of 

the blocks at a given level,   the choice might be made between all blocks 

given only once,   etc.    Certainly after the same block is presented more 

than twice,   some alarm device should be set to call in a human teacher. 

The student would be hung up in an endless loop in this situation which 

suggests inadequacies in the teaching machine program. 

In summary,   then,   a very powerful teaching machine the 

computer-directed teaching machine has been introduced.     Continued 

experimentation,   like Smallwood's miniature geometry course and the 

present speed reading course,   will determine how well this machine 

teaches in comparison with existing teaching machines. 
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APPENDIX A 

Speed Reading Input-Output Devices 

It was necessary to have two devices available for the speed 

reading course: 

1. A tachistoscope. 

2. A text display scope. 

The computer scopes were chosen to represent both devices.    It was not 

possible to use the same scope,   however,   for both devices.     The tachistos 

cope requires the use of a scope with a low persistence phosphor.    (The 

image on the tachistoscope must decay within 1/100 second in order to 

make the  1/100 second duration sweeps possible.)    The text display 

function (on the other hand) requires a steady,   flicker-free image.     There- 

fore a scope with a high persistence phosphor is in order here. 

The tri-color display scope of the AFCRL PDP-1 dual computer 

facility was chosen for the tachistoscope because of its phosphors' low 

persistence.    Several tachistoscopic innovations were suggested by the 

use of a device with an    electronic  shutter    as opposed to a mechanical 

shutter.     With most tachistoscopes a mechanical shutter momentarily 

exposes the text.    The shutter movement is generally vertical (spring 

loaded gravity shutters are generally used).    An obvious improvement 

would be a horizontal exposure of the material.     (We read from left to 

right horizontally.)    This operation is trivial with an electronic shutter. 

4 
Cole's     suggestion of the initial exaggeration of phrase groupings 

(by spreading them apart) was extended with the electronic tachistoscope. 
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The initial material was spread apart not only physically but also chrono- 

logically.     That is,   the phrases were sequentially displayed from left to 

right with pauses between each phrase displayed.    The entire phrase was 

displayed at effectively the same instant because of a high speed,   multiple 

sweep technique.    As a control some of the material was presented without 

this sequential feature (a simple left to right slow speed    single-sweep 

shutter was used).     The students who were given both types of display 

sweeps performed better with the phrase type of display.    Once again 

the conditioning stimuli (both the physical and chronological spacing 

between phrases) were vanished as the student progressed through the 

tachistoscope portion of the course.     The student gradually replaced 

these stimuli with his own judgements about phrase groupings. 

Material was prepared for the tachistoscope portion of the 

course on a flexowriter with a very simple format. 

e.g. 

plOO,25 

now / is the time / for all good men 

For each segment of material the flash duration time in milliseconds 

was specified (in this case  100 milliseconds).    If the flash duration 

specification was preceded by a    p   ,   the phrase sweep mode was used. 

The  second number presented is the optional specification of the per- 

centage of the sweep time to be spent at the delays between phrases 

(marked by the    /    characters). 

The black and white,   incremental or line segment display 

of the AFCRL facility was chosen for the text display both because of 

its phosphor's high persistence and because of the unique,   flicker-free 

•45- 



capabilities engineered into this  scope by the Itek Corporation of Lexington, 

Mass. 

Again material was prepared for text display on a flexowriter.     The 

course comments can be intermixed with tachistoscope as well as text ma- 

terial by enclosing the comments within parentheses.     Material so enclosed 

is displayed on the black and white scope until the page turning switch is 

activated.     When the reading rate was to be measured for a passage,   the 

count of the total number of words in the passage must preceed the passage. 

e. g. 

10 

(Now is the time for all good men to vote.) 

Again the material is displayed until the page turner is engaged.    Questions 

about text are set off by overbars .     The first overbar initiates the ques- 

tion and the  second overbar terminates the question.     The second overbar 

is followed by the number corresponding to the correct answer. 

e. g, 

The product of   x   times   x   is: 

1)     x 

a)   x° 
3) x2 

4) indefinite 

3~ 

Questions are displayed until first a typewritten answer is given then the 

page turner is engaged. 
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APPENDIX B 

Decision Structure Computer Techniques 

With this project a significant improvement in computer versati- 

lity was made over Smallwood's decision structure computer realization. 

This realization can be programmed in two ways: 

1. A different segment of the program may be used for each of the 

nmax teaching cycles to be scanned,   and one program segment would be 

used to perform the truncation estimation.     Here one program segment 

is necessary for each cycle of the search;     if nmax were three,   three 

program segments would be needed. 

2. The same segment of the program may be used recursively 

for each of the nmax teaching cycles  scanned,   and again a single program 

segment would be used to perform the estimations at truncation.     Now ii 

nmax were three,   one program segment plus a push-down structure to 

implement the  recursive nature would be required. 

The first approach,   used by Smallwood,   has the advantage of 

simple,   straight-forward programming.     The  second approach,   used 

with this project,   while difficult to program has the advantage of allow- 

ing nmax to be any value without increasing the size of the computer 

program.     Since the programming effort is only performed once for 

a teaching machine,   the  second approach seems to be the more re- 

warding choice. 

Because the second approach is difficult to program,   a dis- 

cussion of the programming techniques used in this experiment is 

presented.    Recalling the nmax step truncation maximization equation 

(4.10). 
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Max  u (h  ) =Max)   p     .   (h   Ik ) ... Max) P (hw|kw)(   Uf.   (u|h)dU 
j i   J       n j      i_j    x   j       n'   n j        [_,    1     j M     M J 1 t Jn nJn Jn    , nJn M MM X 

k k,, all U 
n M 

and defining; 

n - the number of teaching cycles the  search is ahead of 
the student 

i   .j     k   ,h     - the current level,   branch,   measured 
n    n     n     n 

behavior range,   value of past history respectively 

1      ,   - the value of the new level after placement 
n+1 

Umax - the maximum value of the function    U   which is 
indicative of learning 

i   max - the    j      which yields  Umax the decision 
n n 
Umaxt.ht - temporary storage for Umax,   h respectively 

kmax - the maximum number of ranges into which measured 
behavior can be fitted (5 ranges in this experiment) 

jcount  - the total number of instruction blocks available 
at a 
of   i 
at a given level.     This is a function called    count 

a block diagram of the program segment     used in the variable step search 

computer technique is presented in Figure B-l.     The program is made 

recursive by saving the parameters of the list in a push-down list until 

it is necessary to recall the   parameters by pulling them for the push- 

down table.     The list parameters are:    I   ,j   ,k   , h   , ht. j   max, U, Umax, 
  n    n     n     n n 

jcount. 

The decision search process is  started at the entry called 

present   .    Here the search begins  for the end of the course or the 

truncation value of   n   (whichever comes first) whereupon the appropriate 

value of    U   is estimated.    As every possible path (up to truncation) is 

considered,   the value of   n   will change,   and the   parameters that make 
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each cycle unique will be restored at the proper cycle by the recursive 

push-pull scheme.    When the search reaches to the future,  the parameter 

list is pushed down or saved.     When the search retreats to the past,   the 

parameter list is pulled back or restored.     Ultimately the search is 

completed and the decision is made. 

Generally speaking the closer the search is to an exhaustive 

search,   the better the decision.    That is,   the larger the value of nmax, 

the more reliable the decision.    In the present experiment,   computer 

(A) was making the decisions while computer (B) was controlling the 

input-output equipment.    Actually computer (A) was making decisions 

based on each of the possible ranges into which the student's measured 

behavior for the current instruction block might fit.     First the decisions 

were made for nmax =  1  since these decisions took the least time.     If 

the student was still receiving the instruction material when decisions 

had been calculated for all possible behavior ranges,   new decisions 

were made for nmax = 2,   and so on.    The decision actually used to 

pick the instruction block for the student was always the best decision 

currently available. 
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APPENDIX C 

Maximum Likelihood Estimation 

The conditional probability density function   g..(h|k)    is important 

in the decision making calculations.    It is necessary to estimate a proba- 

bility function for   g..(h|k)   based on the experimentally observed past 

histories for students who were instructed by block   b(i, j)    and whose 

test performance for block   b(i, j) fell in range k.    That is,  a density 

function must be found to represent the set of observations of history 

(h)   for the total number   (N)    of students who have taken the course. 

Assume the set of values of history    {h   , h   , h   , . . . , h    }    have 

been picked from a Beta function of unknown parameters    r   and   s  . 

Beta functions are assumed because of their generality.    For a fixed 

level   (i)  ,   branch   (j)  ,   and test behavior range    (k) 

g    (hfk) = g(h;r,s) 

where (C. 1) 

«(•*>••>-h,;'(i'.ff"'     °*h£1 

and it is  understood that the  subscripts i, j,k remain constant, 
but they are dropped for convenience. 

The normalization factor    B(r, s)    is necessary for the density 

function to integrate (over h) to unity and is expressed in terms of the 

gamma function. 

i r.(y+s) 
B(r,s)       r(r)r(s) 
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7, 18 . 
A maximum likelihood estimate for the unknown parameters 

r   and   s    would require that the value of the N-dimensional joint probabi- 

lity density function for the N observations (called the likelihood function, 

L) with the appropriate    r   and    s    be a maximum.    Such an estimation 

criterion was used in this research project.    If we assume these obser- 

vations are independent,   the likelihood function of the observations and 

the unknown parameters    r   and   s    is equal to the product of the values 

of the Beta function for each observed history (h) 

N       h    r-'(l-h    I5"' 
L<Vh2 Vr'"°El      mB(r.s)m  (C2» 

To find the maximum likelihood estimate of   r   and   s    in terms 

of the experimental data,   we must maximize   L   with respect to   r   and   s 

Maximizing the logarithm of   L   is equivalent to maximizing   L   and is 

considerably easier.     This maximization is performed by separately 

taking the partial derivative of the logarithm of the likelihood function 

with respect to each unknown parameter    (r, s)    and setting each partial 

derivative equal to zero. 

logU.) = -N[logr(r) + logr(s)  - logr(r+s)] 

N N (C. 3) 

+ (r-1) )   h     + (s-1)   >   (1-h    ) 
L_i    m f_j m 

m«l m=l 

N 
81og(L) Blogr(r) aiogr(r + s)      V.      , . 

*V    '   =  -N f K—+N *r—* '-+  ) logh      =0 C. 
or or d r (_j     °   m 4) 

m=l 
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N 

3s os os ^     ° m 
m=l 

(C5) 

aioer(x) 
The function   —r-2    is called the psi function and is tabulated 

d x 
10 

9lQgr(x) 
—r  4*(x) ic.6) 

O X 

Recalling 

3f (x+y)      3f(x+y) 
9x 3 (x+y) 

equations (C. 4) and (C. 5) become 

N 

iMr+s)  - ^(r) --- - i Y log(hm) (C.7) 

m=l 

N 

^(r+s) - v|>(s) = -^ Y log(l-hm) (C.8) 

m=l 

Equations (C. 7) and (C. 8) are solved for    r    and    s    by an 
18 r       , iterative procedure       for a given   N   observations of history    \h     )   . 

In order to update the values of   r    and   s    when a single additional 

history (call it   h   )   is observed after one more student has encountered 
n 

the point    (i, j,k)    in the course,   the old values of three pertinent para- 
N N 

meters    N ,    /   log (h    )     >   loc(l-h    )    must be known.    Proceeding with 
i_j     m    (_j     ° m 

m--l m=l 
update process then involves; 
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updating   N   to a new value    N' 

N! = N + 1 (C.9) 

N N' 

updating   y   log (h   )to a new value    y   log (h    ) 

m=l m=l 

N1 N 

Ylog(h    )=yiog(h    ) + log(h) (CIO) 
CJ rn       (_i m n 

m=l m=l 

N N' 

updating    /   log(l-h    )   to a new value    y log(l-h    ) 

m=l m=l 

N' N 

yiog(i-h )=yiog(i-h ) + iog(i-h ) (en) 
m=l m-1 
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APPENDIX D 

Bayesian Estimation 

The importance of estimating a probability density function   g  . (hjk) 

from a set of empirical histories    {h    }    as well as the estimation technique 
m 

used in this project were discussed in Appendix C      However a different 

method of estimation called Bayesian estimation will be discussed in this 

section.     This method is more difficult to implement on a computer. 

Assume that the conditional probability densitv function of an ob- 

servation of history    (h)    at a particular    i   j   k    given the parameters    r 

and   s   is: 

G(h|r,s) 
h^d-h)8"1 

B(r,s) 
(D. 1) 

where the   i, j,k   parameters ate held constant but 
dropped for convenience throughout this  section. 

A prior exists for the joint probability density function of    r 

and    s call it    w   tr, s)  .     The subscript on   w   indicates the number 

of times the function   (w)   has been updated zero times here because 

it is the prior. 

Prior for w(r   s) 
Figure Dl 
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Then the estimated probability density function values for each 

history   (h)   is: 

g0(h)-y|    w0(r,s)G(h|r,8)drds is (D. 2) 

all r+s 

The   ^    over a variable means the estimate of that variable. 

The subscript on   g1   (h)    indicates the particular function   (w) 

from which the estimated value of   g (h)    is derived. 

When an observation of history   (h  )    is made,   the conditional 

probability density function pertinent to the decision calculations is: 

g^l^) 

This function is estimated by: 

^(hjhj) =   f   f     Wj (r,s|h1)G(h|r,s)drd£ (D. 3) 

all r+s 

where the function   (w.)    is a posterior function based on the prior 

function   (w_)    and the observation   h     .     From Bayes' Theorem: 

G(h1 |r, s) wQ (r, s) 
w1 (r, s) W (D. 4) 

Using the formula (D. 4) a new function   (w  )    is generated for use in 

conjunction with computing the estimate of   g    (h|h  )    in equation (D. 3) 
^(r, sjh^ 

Posterior for w(r,s) 
Figure D2 
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This suggests a successive technique with which the function   (w) 

may be updated for each new observation of history   (h  )   to give the latest 

estimate of   g   (h|h   ,...,h   )   conditioned upon all of the empirical obser - 

vations.    The formula for successively updating the function   (w)    is: 

G(h   |r, s)w     .(r, sjh. ,h,, . . . ,h     .) 
, i,       . ,    v n' n-1 1      2 n-1 

w     r,s  h   ,h    h      =  3 rr—[T T \  n '1      2 n g (hh,...,h        ) 
n-1     n     1 n-1 

n > 1 (D.5) 

The estimation of the conditional probability density value for 

g(h|h   , ...,h  )   becomes: 

£(h|h1,...,h)=\    \      w   (r, sjh. , h  )G(h|r, s)drds 
n 1 n        J   J n 1 n 

all r+s 
(D  6) 

A realization of this estimation procedure would involve the 

tabulation of the    w   function,   and updating the    w function table.     This 

would involve many double integrations to compute   0     . (h     h. , . . . ,h     ,) 
n-1      n     1 n-1 

It would also be necessary to perform a double integration every time 

an estimate of   $"   (h  h, , . . . , h   )    were required unles    g   (hh,,..,,h   ) 
n 1 n n 1 n 

were also tabulated. This realization would require enormous computer 

storage and time; hence, the method of Bayesian estimation was consi- 

dered impractical for a computer-directed decision mechanism, 
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APPENDIX E 

Speed Reading Course Operating Instructions 

For those who wish to continue this experiment or to take the 

speed reading course,   the operating instructions are included.     Two 

programs are read into computer (A).     First the data base of teaching 

machine tables is read into core  1  of computer (A),   designated as FDP-lc 3, 

via the paper tape reader.    Next the decision structure and control pro- 

gram is read into core 0 of computer (A).     The external switch box must 

be attached to the external sense switch receptacle of computer (B),   de- 

signated as PDP-lc 4.     The teaching machine course tape is threaded 

onto a tape unit of computer (B).     This tape unit is dialed to unit 4. 

After the paper tape called    RIM Teaching Machine    is read into core 0 

of computer (B),   the machine is ready to begin the course. 

After a student has completed the course,   a paper tape summary 

of the student's path and test behaviors is punched out by computer (A). 

This paper tape should be checked for rips by placing it in the reader 

and starting the computer (A) with sense switch 1  up at location 100   . 
o 

If there is an error typeout,   the computer should be restarted at loca- 

tion 555    to get a new punch-out.     This paper tape is used to update 
o 

the teaching machine tables. 

The update process may be done after each student or after 

many students.   The update program is read into either computer's 

core 0.    The current teaching machine tables must be located in 

core  1  of this machine.     With all sense  switches down,   the individual 

student tapes are threaded into the reader,   and the computer is  started 
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at  100   .    When the computer is finished with each tape,   it will type     update 
8 

process completed   .    At this time either a new tape will be threaded or the 

computer is restarted at  100    with sense switch 2 up for the punch out of the 
o 

revised teaching machine tables.     This punch out may be checked for rips 

by threading it into the reader,   leaving sense switch 2 up,   and depressing 

the read-in switch.    If there are any errors,   the reader will stop before 

the end of the tape is reached.     The rip free punchout is used as the 

current teaching machine tables until the update process is performed 

again. 
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